Societal Impacts

The Capacity for Moral Self-Correction in Large Language Models

Feb 15, 2023
Read Paper

Abstract

We test the hypothesis that language models trained with reinforcement learning from human feedback (RLHF) have the capability to "morally self-correct" -- to avoid producing harmful outputs -- if instructed to do so. We find strong evidence in support of this hypothesis across three different experiments, each of which reveal different facets of moral self-correction. We find that the capability for moral self-correction emerges at 22B model parameters, and typically improves with increasing model size and RLHF training. We believe that at this level of scale, language models obtain two capabilities that they can use for moral self-correction: (1) they can follow instructions and (2) they can learn complex normative concepts of harm like stereotyping, bias, and discrimination. As such, they can follow instructions to avoid certain kinds of morally harmful outputs. We believe our results are cause for cautious optimism regarding the ability to train language models to abide by ethical principles.

Policy Memo

Moral Self-Correction Policy Memo

Related content

Introducing Bloom: an open source tool for automated behavioral evaluations

Read more

Project Vend: Phase two

In June, we revealed that we’d set up a small shop in our San Francisco office lunchroom, run by an AI shopkeeper. It was part of Project Vend, a free-form experiment exploring how well AIs could do on complex, real-world tasks. How has Claude's business been since we last wrote?

Read more

Introducing Anthropic Interviewer: What 1,250 professionals told us about working with AI

We built an interview tool called Anthropic Interviewer. Powered by Claude, Anthropic Interviewer runs detailed interviews automatically and at unprecedented scale.

Read more