Abstract
Large-scale pre-training has recently emerged as a technique for creating capable, general purpose, generative models such as GPT-3, Megatron-Turing NLG, Gopher, and many others. In this paper, we highlight a counterintuitive property of such models and discuss the policy implications of this property. Namely, these generative models have an unusual combination of predictable loss on a broad training distribution (as embodied in their "scaling laws"), and unpredictable specific capabilities, inputs, and outputs. We believe that the high-level predictability and appearance of useful capabilities drives rapid development of such models, while the unpredictable qualities make it difficult to anticipate the consequences of model deployment. We go through examples of how this combination can lead to socially harmful behavior with examples from the literature and real world observations, and we also perform two novel experiments to illustrate our point about harms from unpredictability. Furthermore, we analyze how these conflicting properties combine to give model developers various motivations for deploying these models, and challenges that can hinder deployment. We conclude with a list of possible interventions the AI community may take to increase the chance of these models having a beneficial impact. We intend this paper to be useful to policymakers who want to understand and regulate AI systems, technologists who care about the potential policy impact of their work, and academics who want to analyze, critique, and potentially develop large generative models.
Policy Memo
Related content
Introducing Anthropic Interviewer: What 1,250 professionals told us about working with AI
Read moreHow AI is transforming work at Anthropic
We surveyed Anthropic engineers and researchers, conducted in-depth qualitative interviews, and studied internal Claude Code usage data to find out how AI use is changing how we do our jobs. We found that AI use is radically changing the nature of work for software developers.
Read moreEstimating AI productivity gains from Claude conversations
Analyzing 100,000 Claude conversations, this research finds AI reduces task time by 80% on average. If universally adopted over 10 years, current models could increase US labor productivity growth by 1.8% annually—doubling recent rates. Knowledge work like software development and management see the largest gains.
Read more